3.492 \(\int \frac{x^2}{\left (a+b x^3\right )^2 \left (c+d x^3\right )^{3/2}} \, dx\)

Optimal. Leaf size=108 \[ -\frac{d}{\sqrt{c+d x^3} (b c-a d)^2}-\frac{1}{3 \left (a+b x^3\right ) \sqrt{c+d x^3} (b c-a d)}+\frac{\sqrt{b} d \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{(b c-a d)^{5/2}} \]

[Out]

-(d/((b*c - a*d)^2*Sqrt[c + d*x^3])) - 1/(3*(b*c - a*d)*(a + b*x^3)*Sqrt[c + d*x
^3]) + (Sqrt[b]*d*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(b*c - a*d
)^(5/2)

_______________________________________________________________________________________

Rubi [A]  time = 0.25581, antiderivative size = 108, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208 \[ -\frac{d}{\sqrt{c+d x^3} (b c-a d)^2}-\frac{1}{3 \left (a+b x^3\right ) \sqrt{c+d x^3} (b c-a d)}+\frac{\sqrt{b} d \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{(b c-a d)^{5/2}} \]

Antiderivative was successfully verified.

[In]  Int[x^2/((a + b*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

-(d/((b*c - a*d)^2*Sqrt[c + d*x^3])) - 1/(3*(b*c - a*d)*(a + b*x^3)*Sqrt[c + d*x
^3]) + (Sqrt[b]*d*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(b*c - a*d
)^(5/2)

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 27.0712, size = 90, normalized size = 0.83 \[ - \frac{\sqrt{b} d \operatorname{atan}{\left (\frac{\sqrt{b} \sqrt{c + d x^{3}}}{\sqrt{a d - b c}} \right )}}{\left (a d - b c\right )^{\frac{5}{2}}} - \frac{d}{\sqrt{c + d x^{3}} \left (a d - b c\right )^{2}} + \frac{1}{3 \left (a + b x^{3}\right ) \sqrt{c + d x^{3}} \left (a d - b c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**2/(b*x**3+a)**2/(d*x**3+c)**(3/2),x)

[Out]

-sqrt(b)*d*atan(sqrt(b)*sqrt(c + d*x**3)/sqrt(a*d - b*c))/(a*d - b*c)**(5/2) - d
/(sqrt(c + d*x**3)*(a*d - b*c)**2) + 1/(3*(a + b*x**3)*sqrt(c + d*x**3)*(a*d - b
*c))

_______________________________________________________________________________________

Mathematica [A]  time = 0.236054, size = 99, normalized size = 0.92 \[ \frac{\sqrt{b} d \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{(b c-a d)^{5/2}}-\frac{2 a d+b \left (c+3 d x^3\right )}{3 \left (a+b x^3\right ) \sqrt{c+d x^3} (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]  Integrate[x^2/((a + b*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

-(2*a*d + b*(c + 3*d*x^3))/(3*(b*c - a*d)^2*(a + b*x^3)*Sqrt[c + d*x^3]) + (Sqrt
[b]*d*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(b*c - a*d)^(5/2)

_______________________________________________________________________________________

Maple [C]  time = 0.01, size = 485, normalized size = 4.5 \[ -{\frac{b}{3\, \left ( ad-bc \right ) ^{2} \left ( b{x}^{3}+a \right ) }\sqrt{d{x}^{3}+c}}-{\frac{2\,d}{3\, \left ( ad-bc \right ) ^{2}}{\frac{1}{\sqrt{ \left ({x}^{3}+{\frac{c}{d}} \right ) d}}}}+{\frac{{\frac{i}{2}}b\sqrt{2}}{d}\sum _{{\it \_alpha}={\it RootOf} \left ( b{{\it \_Z}}^{3}+a \right ) }{\frac{1}{ \left ( ad-bc \right ) ^{3}}\sqrt [3]{-c{d}^{2}}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-c{d}^{2}}+\sqrt [3]{-c{d}^{2}} \right ) } \right ){\frac{1}{\sqrt [3]{-c{d}^{2}}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-c{d}^{2}}} \right ) \left ( -3\,\sqrt [3]{-c{d}^{2}}+i\sqrt{3}\sqrt [3]{-c{d}^{2}} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-c{d}^{2}}+\sqrt [3]{-c{d}^{2}} \right ) } \right ){\frac{1}{\sqrt [3]{-c{d}^{2}}}}}} \left ( i\sqrt [3]{-c{d}^{2}}{\it \_alpha}\,\sqrt{3}d+2\,{{\it \_alpha}}^{2}{d}^{2}-i\sqrt{3} \left ( -c{d}^{2} \right ) ^{{\frac{2}{3}}}-\sqrt [3]{-c{d}^{2}}{\it \_alpha}\,d- \left ( -c{d}^{2} \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-c{d}^{2}}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-c{d}^{2}}} \right ){\frac{1}{\sqrt [3]{-c{d}^{2}}}}}}},{\frac{b}{2\, \left ( ad-bc \right ) d} \left ( 2\,i{{\it \_alpha}}^{2}\sqrt [3]{-c{d}^{2}}\sqrt{3}d-i{\it \_alpha}\, \left ( -c{d}^{2} \right ) ^{{\frac{2}{3}}}\sqrt{3}+i\sqrt{3}cd-3\,{\it \_alpha}\, \left ( -c{d}^{2} \right ) ^{2/3}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-c{d}^{2}} \left ( -{\frac{3}{2\,d}\sqrt [3]{-c{d}^{2}}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-c{d}^{2}}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^2/(b*x^3+a)^2/(d*x^3+c)^(3/2),x)

[Out]

-1/3*b/(a*d-b*c)^2*(d*x^3+c)^(1/2)/(b*x^3+a)-2/3*d/(a*d-b*c)^2/((x^3+c/d)*d)^(1/
2)+1/2*I*b/d*2^(1/2)*sum(1/(a*d-b*c)^3*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1
/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/
3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^
(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(
-c*d^2)^(1/3)*_alpha*3^(1/2)*d+2*_alpha^2*d^2-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^
(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)
-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),1/2*b/d*(2*I*_a
lpha^2*(-c*d^2)^(1/3)*3^(1/2)*d-I*_alpha*(-c*d^2)^(2/3)*3^(1/2)+I*3^(1/2)*c*d-3*
_alpha*(-c*d^2)^(2/3)-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d
^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/((b*x^3 + a)^2*(d*x^3 + c)^(3/2)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.231193, size = 1, normalized size = 0.01 \[ \left [-\frac{6 \, b d x^{3} - 3 \,{\left (b d x^{3} + a d\right )} \sqrt{d x^{3} + c} \sqrt{\frac{b}{b c - a d}} \log \left (\frac{b d x^{3} + 2 \, b c - a d + 2 \, \sqrt{d x^{3} + c}{\left (b c - a d\right )} \sqrt{\frac{b}{b c - a d}}}{b x^{3} + a}\right ) + 2 \, b c + 4 \, a d}{6 \,{\left (a b^{2} c^{2} - 2 \, a^{2} b c d + a^{3} d^{2} +{\left (b^{3} c^{2} - 2 \, a b^{2} c d + a^{2} b d^{2}\right )} x^{3}\right )} \sqrt{d x^{3} + c}}, -\frac{3 \, b d x^{3} - 3 \,{\left (b d x^{3} + a d\right )} \sqrt{d x^{3} + c} \sqrt{-\frac{b}{b c - a d}} \arctan \left (-\frac{{\left (b c - a d\right )} \sqrt{-\frac{b}{b c - a d}}}{\sqrt{d x^{3} + c} b}\right ) + b c + 2 \, a d}{3 \,{\left (a b^{2} c^{2} - 2 \, a^{2} b c d + a^{3} d^{2} +{\left (b^{3} c^{2} - 2 \, a b^{2} c d + a^{2} b d^{2}\right )} x^{3}\right )} \sqrt{d x^{3} + c}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/((b*x^3 + a)^2*(d*x^3 + c)^(3/2)),x, algorithm="fricas")

[Out]

[-1/6*(6*b*d*x^3 - 3*(b*d*x^3 + a*d)*sqrt(d*x^3 + c)*sqrt(b/(b*c - a*d))*log((b*
d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^3
+ a)) + 2*b*c + 4*a*d)/((a*b^2*c^2 - 2*a^2*b*c*d + a^3*d^2 + (b^3*c^2 - 2*a*b^2*
c*d + a^2*b*d^2)*x^3)*sqrt(d*x^3 + c)), -1/3*(3*b*d*x^3 - 3*(b*d*x^3 + a*d)*sqrt
(d*x^3 + c)*sqrt(-b/(b*c - a*d))*arctan(-(b*c - a*d)*sqrt(-b/(b*c - a*d))/(sqrt(
d*x^3 + c)*b)) + b*c + 2*a*d)/((a*b^2*c^2 - 2*a^2*b*c*d + a^3*d^2 + (b^3*c^2 - 2
*a*b^2*c*d + a^2*b*d^2)*x^3)*sqrt(d*x^3 + c))]

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**2/(b*x**3+a)**2/(d*x**3+c)**(3/2),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.218642, size = 203, normalized size = 1.88 \[ -\frac{1}{3} \, d{\left (\frac{3 \, b \arctan \left (\frac{\sqrt{d x^{3} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt{-b^{2} c + a b d}} + \frac{3 \,{\left (d x^{3} + c\right )} b - 2 \, b c + 2 \, a d}{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )}{\left ({\left (d x^{3} + c\right )}^{\frac{3}{2}} b - \sqrt{d x^{3} + c} b c + \sqrt{d x^{3} + c} a d\right )}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/((b*x^3 + a)^2*(d*x^3 + c)^(3/2)),x, algorithm="giac")

[Out]

-1/3*d*(3*b*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/((b^2*c^2 - 2*a*b*c*d
 + a^2*d^2)*sqrt(-b^2*c + a*b*d)) + (3*(d*x^3 + c)*b - 2*b*c + 2*a*d)/((b^2*c^2
- 2*a*b*c*d + a^2*d^2)*((d*x^3 + c)^(3/2)*b - sqrt(d*x^3 + c)*b*c + sqrt(d*x^3 +
 c)*a*d)))